Skip to contents

If you use this software in your research, please cite the references listed below.

The Sparse Marginal Epistasis Test (SME)

Stamp J, Smith Pattillo S, Weinreich D, Crawford L (2025). Sparse modeling of interactions enables fast detection of genome-wide epistasis in biobank-scale studies. biorxiv, https://doi.org/10.1101/2025.01.11.632557

Stamp J & Crawford L (2025). smer: Sparse Marginal Epistasis Test. https://github.com/lcrawlab/sme, https://lcrawlab.github.io/sme/

The multivariate Marginal Epistasis Test (mvMAPIT)

Stamp J, DenAdel A, Weinreich D, Crawford, L (2023). Leveraging the Genetic Correlation between Traits Improves the Detection of Epistasis in Genome-wide Association Studies. G3 Genes|Genomes|Genetics 13(8), jkad118; doi: https://doi.org/10.1093/g3journal/jkad118

Stamp J, Crawford L (2022). mvMAPIT: Multivariate Genome Wide Marginal Epistasis Test. https://github.com/lcrawlab/mvMAPIT, https://lcrawlab.github.io/mvMAPIT/

The Marginal Epistasis Test (MAPIT)

Crawford L, Zeng P, Mukherjee S, & Zhou X (2017). Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS genetics, 13(7), e1006869. https://doi.org/10.1371/journal.pgen.1006869