In order to enable users to work with mvMAPIT without having to install all dependencies and libraries on their local, we provide a docker build with all dependencies and an installed R package mvMAPIT
. Learn how to build your own version of the docker image.
Follow the official guide to learn how to Get Docker. This is required for being able to follow this tutorial.
The github repository of mvMAPIT already comes with a Dockerfile
. To build the image, clone the github repository and run the following commands.
cd mvMAPIT
docker build -t mvmapit .
This will produce an image named mvmapit
that contains Rstudio
, mvMAPIT
, and all dependencies.
With a local copy of the docker image mvmapit
available, run the following code.
docker run --rm -ti \
-e DISABLE_AUTH=true \
-p 8787:8787 \
--name my_container \
mvmapit
This will start the docker container that serves an RStudio application at localhost:8787
. In this container, mvMAPIT
is already installed and can be imported and run in the R console via the following code.
library(mvMAPIT)
mvmapit(t(simulated_data$genotype[1:100,1:10]),
t(simulated_data$trait[1:100,]),
cores = 2, logLevel = "DEBUG")
## 2024-10-21 17:58:15.211364 DEBUG:mvmapit:Running in normal test mode.
## 2024-10-21 17:58:15.218951 DEBUG:mvmapit:Genotype matrix: 10 x 100
## 2024-10-21 17:58:15.230692 DEBUG:mvmapit:Phenotype matrix: 2 x 100
## 2024-10-21 17:58:15.23145 DEBUG:mvmapit:Number of zero variance variants: 0
## 2024-10-21 17:58:15.232141 DEBUG:mvmapit:Genotype matrix after removing zero variance variants: 10 x 100
## 2024-10-21 17:58:15.232651 DEBUG:mvmapit:Scale X matrix appropriately.
## 2024-10-21 17:58:15.23364 INFO:mvmapit:Running normal C++ routine.
## 2024-10-21 17:58:15.254921 DEBUG:mvmapit:Calculated mean time of execution. Return list.
## $pvalues
## # A tibble: 30 × 3
## id trait p
## <chr> <chr> <dbl>
## 1 snp_00001 p_01*p_01 0.435
## 2 snp_00001 p_02*p_01 0.476
## 3 snp_00001 p_02*p_02 0.909
## 4 snp_00002 p_01*p_01 0.510
## 5 snp_00002 p_02*p_01 0.606
## 6 snp_00002 p_02*p_02 0.326
## 7 snp_00003 p_01*p_01 0.452
## 8 snp_00003 p_02*p_01 0.536
## 9 snp_00003 p_02*p_02 0.140
## 10 snp_00004 p_01*p_01 0.688
## # ℹ 20 more rows
##
## $pves
## # A tibble: 30 × 3
## id trait PVE
## <chr> <chr> <dbl>
## 1 snp_00001 p_01*p_01 0.0615
## 2 snp_00001 p_02*p_01 0.0663
## 3 snp_00001 p_02*p_02 -0.00451
## 4 snp_00002 p_01*p_01 -0.0215
## 5 snp_00002 p_02*p_01 -0.0239
## 6 snp_00002 p_02*p_02 -0.0287
## 7 snp_00003 p_01*p_01 0.0579
## 8 snp_00003 p_02*p_01 0.0493
## 9 snp_00003 p_02*p_02 -0.0400
## 10 snp_00004 p_01*p_01 -0.0146
## # ℹ 20 more rows
##
## $duration
## process duration_ms
## 1 cov 0
## 2 projections 3
## 3 vectorize 0
## 4 q 3
## 5 S 0
## 6 vc 0