Basic Usage on PBMC3k Data
basic-usage.Rmd
First, we use the SeuratData
data package to first
download and then load 2700 PBMCs. The loaded SeuratObject
,
pbmc3k
, is from an old version of Seurat
, and
so we update the object to v5.
set.seed(123)
SeuratData::InstallData("pbmc3k")
data("pbmc3k")
pbmc3k <- UpdateSeuratObject(pbmc3k)
Now, we use Seurat
to perform the usual preprocessing
steps that are performed prior to clustering.
pbmc3k <- NormalizeData(pbmc3k)
pbmc3k <- FindVariableFeatures(pbmc3k)
pbmc3k <- ScaleData(pbmc3k)
pbmc3k <- RunPCA(pbmc3k)
pbmc3k <- FindNeighbors(pbmc3k)
pbmc3k <- RunUMAP(pbmc3k, dims = 1:10)
The recall
algorithm can be run with a single function
call as a drop-in replacement for the Seurat
function
FindClusters
.
pbmc3k <- FindClustersRecall(pbmc3k)
The recall
clusters are set to the idents of the
SeuratObject
that is returned by
FindClustersRecall
DimPlot(pbmc3k)
Cluster labels from FindClustersRecall
care stored in
the metadata in the column
pbmc3k@meta.data$recall_clusters
.
DimPlot(pbmc3k, group.by = "recall_clusters")